1,340 research outputs found

    Thermodynamic Model of a Very High Efficiency Power Plant Based on a Biomass Gasifier, SOFCs, and a Gas Turbine

    Full text link
    Thermodynamic calculations with a power plant based on a biomass gasifier, SOFCs and a gas turbine are presented. The SOFC anode off-gas which mainly consists of steam and carbon dioxides used as a gasifying agent leading to an allothermal gasification process for which heat is required. Implementation of heat pipes between the SOFC and the gasifier using two SOFC stacks and intercooling the fuel and the cathode streams in between them has shown to be a solution on one hand to drive the allothermal gasification process and on the other hand to cool down the SOFC. It is seen that this helps to reduce the exergy losses in the system significantly. With such a system, electrical efficiency around 73% is shown as achievable

    Personality factors and cognitive functioning in patients with somatic symptom and related disorders

    Get PDF
    Objective Somatic symptom and related disorders (SSRD) are often complicated by cognitive symptoms, including reduced information processing speed, memory, and planning. Depression has been related to poor cognitive functioning in SSRD, but the role of underlying personality factors is poorly understood. This study investigates the association between personality factors (neuroticism, extraversion, openness, agreeableness, and conscientiousness) with cognitive functioning in patients with SSRD. Methods Data from 366 patients with SSRD from a tertiary care expert center (mean age = 42.1 years (SD = 13.4), 59.6% women) were analyzed using a cross-sectional design. Neuropsychological assessments included measures of information processing speed, memory, attention, and executive function. Personality factors were assessed using the NEO-FFI and depressive symptoms using the PHQ-9. Results Regression analyses showed associations between neuroticism with poorer performance on visual memory (B = −0.09, SE = 0.04, β = −0.14, p = .019), and planning (B = −0.09. SE = 0.02, β = −0.23, p < .001). Extraversion was also inversely associated with visual memory (B = −0.13, SE = 0.05, β = −0.18, p = .011) and planning (B = −0.07, SE = 0.03, β = −0.17, p = .021) and openness was associated with better visual memory (B = 0.17, SE = 0.05, β = 0.19, p = .002). These associations were attenuated but remained significant after adjusting for depressive symptoms. Conclusion Neuroticism, extraversion, and low openness were associated with lower cognitive functioning (particularly planning and visual memory) in patients with SSRD, which remained significant after taking depressive symptoms into account

    Beam Orientation Optimization for Intensity Modulated Radiation Therapy using Adaptive l1 Minimization

    Full text link
    Beam orientation optimization (BOO) is a key component in the process of IMRT treatment planning. It determines to what degree one can achieve a good treatment plan quality in the subsequent plan optimization process. In this paper, we have developed a BOO algorithm via adaptive l_1 minimization. Specifically, we introduce a sparsity energy function term into our model which contains weighting factors for each beam angle adaptively adjusted during the optimization process. Such an energy term favors small number of beam angles. By optimizing a total energy function containing a dosimetric term and the sparsity term, we are able to identify the unimportant beam angles and gradually remove them without largely sacrificing the dosimetric objective. In one typical prostate case, the convergence property of our algorithm, as well as the how the beam angles are selected during the optimization process, is demonstrated. Fluence map optimization (FMO) is then performed based on the optimized beam angles. The resulted plan quality is presented and found to be better than that obtained from unoptimized (equiangular) beam orientations. We have further systematically validated our algorithm in the contexts of 5-9 coplanar beams for 5 prostate cases and 1 head and neck case. For each case, the final FMO objective function value is used to compare the optimized beam orientations and the equiangular ones. It is found that, our BOO algorithm can lead to beam configurations which attain lower FMO objective function values than corresponding equiangular cases, indicating the effectiveness of our BOO algorithm.Comment: 19 pages, 2 tables, and 5 figure

    A dynamic flow model mimicking duodenoscope reprocessing after bacterial contamination for translational research

    Get PDF
    OBJECTIVE: Duodenoscopy-associated infections and outbreaks are reported globally despite strict adherence to duodenoscope reprocessing protocols. Therefore, new developments in the reprocessing procedure are needed. DESIGN: We evaluated a novel dynamic flow model for an additional cleaning step between precleaning and manual cleaning in the reprocessing procedure. METHODS: A parallel plate flow chamber with a fluorinated ethylene propylene bottom plate was used to mimic the duodenoscope channels. The flow chamber was inoculated with a suspension containing Klebsiella pneumoniae to simulate bacterial contamination during a duodenoscopic procedure. After inoculation the flow chamber was flushed with a detergent mimicking precleaning. Subsequently the flow chamber was subjected to different interventions: flow with phosphate-buffered saline (PBS), flow with 2 commercial detergents, flow with sodium dodecyl sulfate with 3 different concentrations, and flow with microbubbles. Adhering bacteria were counted using phase-contrast microscopy throughout the experiment, and finally, bacterial viability was assessed. RESULTS: During precleaning both PBS and 1% (v/v) Neodisher Mediclean Forte were able to desorb bacteria, but neither proved superior. After precleaning only sodium dodecyl sulfate could desorb bacteria. CONCLUSIONS: Flushing during precleaning is an essential step for reducing adhering luminal bacteria, and sodium dodecyl sulfate is a promising detergent for bacterial desorption from duodenoscope channels after precleaning

    Accepting higher morbidity in exchange for sacrificing fewer animals in studies developing novel infection-control strategies.

    Get PDF
    Preventing bacterial infections from becoming the leading cause of death by the year 2050 requires the development of novel, infection-control strategies, building heavily on biomaterials science, including nanotechnology. Pre-clinical (animal) studies are indispensable for this development. Often, animal infection outcomes bear little relation to human clinical outcome. Here, we review conclusions from pathogen-inoculum dose-finding pilot studies for evaluation of novel infection-control strategies in murine models. Pathogen-inoculum doses are generally preferred that produce the largest differences in quantitative infection outcome parameters between a control and an experimental group, without death or termination of animals due to having reached an inhumane end-point during the study. However, animal death may represent a better end-point for evaluation than large differences in outcome parameters or number of days over which infection persists. The clinical relevance of lower pre-clinical outcomes, such as bioluminescence, colony forming units (CFUs) retrieved or more rapid clearance of infection is unknown, as most animals cure infection without intervention, depending on pathogen-species and pathogen-inoculum dose administered. In human clinical practice, patients suffering from infection present to hospital emergency wards, frequently in life-threatening conditions. Animal infection-models should therefore use prevention of death and recurrence of infection as primary efficacy targets to be addressed by novel strategies. To compensate for increased animal morbidity and mortality, animal experiments should solely be conducted for pre-clinical proof of principle and safety. With the advent of sophisticated in vitro models, we advocate limiting use of animal models when exploring pathogenesis or infection mechanisms

    Influence of biofilm lubricity on shear-induced transmission of staphylococcal biofilms from stainless steel to silicone rubber

    Get PDF
    In real-life situations, bacteria are often transmitted from biofilms growing on donor surfaces to receiver ones. Bacterial transmission is more complex than adhesion, involving bacterial detachment from donor and subsequent adhesion to receiver surfaces. Here, we describe a new device to study shear-induced bacterial transmission from a (stainless steel) pipe to a (silicone rubber) tube and compare transmission of EPS-producing and non-EPS-producing staphylococci. Transmission of an entire biofilm from the donor to the receiver tube did not occur, indicative of cohesive failure in the biofilm rather than of adhesive failure at the donor-biofilm interface. Biofilm was gradually transmitted over an increasing length of receiver tube, occurring mostly to the first 50cm of the receiver tube. Under high-shearing velocity, transmission of non-EPS-producing bacteria to the second half decreased non-linearly, likely due to rapid thinning of the lowly lubricious biofilm. Oppositely, transmission of EPS-producing strains to the second tube half was not affected by higher shearing velocity due to the high lubricity and stress relaxation of the EPS-rich biofilms, ensuring continued contact with the receiver. The non-linear decrease of ongoing bacterial transmission under high-shearing velocity is new and of relevance in for instance, high-speed food slicers and food packaging
    • …
    corecore